
Markovian Component Modeling

F. Dankar and G.V. Bochmann
School of Information Technology and Engineering (SITE), University of Ottawa

Email: fdankar@site.uottawa.ca, bochmann@site.uottawa.ca

Abstract

We consider the following problem: For a real-time
probabilistic system S consisting of two submodules M1

and M2, the specification of the global system S is
given, as well as part of the specification of M1 and
part of the specification of M2 (the possible traces are
known but not their probabilities nor their timing
delays). We need to fully determine of M1 and M2 in a
way to “best approximate” the composition M1×M2 to
S.
In this paper, a solution of this problem in the context
of continuous time Markov chains (CTMC) is given.

1. Introduction

Modern systems tend to be more and more
complex, hence resulting in large and complex models.
The notion of decomposing a system into smaller
subsystems is well known and results in smaller and
easier to model components.

An instance of this problem is submodule
construction. The submodule construction problem
consists of constructing the specification of a
submodule X when the specifications of system S and
all its submodules except X are given. The construction
should be done in a way such that the composition of
the known submodules with X conforms to S.
Submodule construction was first formulated and
treated in [7], where the specifications are given as
execution sequences and trace equivalence is the
conformance relation. Some work was done using
labeled transition systems as a model for the
specification and observational equivalence as the
conformance relation [6,9] and other work was done
for I/O finite state machines as a model for the
specifications and quasi-equivalence as conformance
relation [4,8].

The problem that we deal with consists of
determining the performance of all submodules of a
real time probabilistic system S when the specification

of system S is known as well as the traces of all its
submodules. The exact problem we deal with is stated
as follows:

A continuous-time Markov chain (CTMC) S is
designed as a composition of two CTMC submodules
M1 and M2. The specification of S is given as well as
the traces for M1 and M2 (in M1 and M2 possible
transitions are known, but not their probabilities nor
their timing delays, which are expressed in terms of
transition rates). We need to determine the unknown
rates in M1 and M2 such that M1×M2 behaves at least
“as good as” S. Note that, given S and M1 the
transitions in M2 can be constructed using submodule
construction [1,7].

To design S as a product of two components M1 and
M2, some internal interactions are required between M1

and M2 for the purpose of synchronization. When the
product of M1 and M2 is made these internal
interactions are hidden and they become internal
delays.

Some of the challenges faced while determining the
unknown rates in M1 and M2, are:
- Removing the internal delays from the

composition M1×M2 (we use an algorithm defined
in [3]).

- Proving that the characteristics of (M1×M2) is not
altered after removing its internal delays. To do
that, we define two equivalences, namely
“average simulation equivalence” and “average
delay equivalence”, that are preserved with the
removal of internal delays.

- Prove some important properties for the
equivalences.

In the coming section we will present some basic
definitions needed in the course of the paper, then in
Section 3 we will present a motivating example to
better explain the purpose of the paper. In Sections 3
and 4 we will proceed with the solution steps. Then in
Section 5 two examples are presented.

2. RTFSM, CTMC and DTMC

2.1.RTFSM

A real-time finite state machine RTFSM M= (S, ∑,
∆, T, P, s0) is defined as follows:
• ∑ is a set of events,
• S is a finite set of states
• ∆ ⊆ Sx∑xS is the transition relation satisfying the
following condition: Given s∈S, the set { a∈∑ ; (s, a,
s’)∈∆, for some s’∈S} is finite. Note: This is referred
to as the local finite branching property.
• T: S→Q(rational numbers) is the exact time spent in
every state.
• P: ∆→[0,1] is the probability function, which assigns
a probability to every transition. The following
condition applies, for all states s∈S, Σall transitions t ⊂ ∆ from s

P(t)=1.
• s0 is the initial state

2.2.CTMC

We follow the same ideas as in [10]:
A Continuous Time Markov Chain (CTMC) is a tuple
(S, ∑, ∆, µ, s0) where:
• ∑, S, ∆ and s0 are defined as in Section 2.1
• µ: ∆→[0,∞) is the transition rate function
- The exit rate of a state s is the sum of the rates of

all the activities enabled from s, i.e. µ(s)= Σe∈Σ

µ(s,e,s’), for all s’.
- The rate of going from state s to state r is denoted

by µ(s,r)= Σe∈Σ µ(s,e,r)
- Given that we are in a particular state x, with exit

rate µ(x), the probability that a certain transition
(e, µ(e)) occurs is:
Pe = µ(e) /µ(x), Moreover Σall transitions from x µ(e)
/µ(x)=1.
Hence, an alternative definition for a CTMC
would give the exit rate rx for every state x
together with the probability for each transition e
from x. The rate of the transition e from x would
be then: re=Pe rx.

- If µ(x) is the rate of state x, then the amount of
time spent on average in state x is 1/µ(x). So a
CTMC and an RTFSM differ in the delay time at
their states, In an RTFSM it is constant, while in a
CTMC it is not constant, it is rather random with
given exponential distribution.

- The probability of going from state s to state r is
denoted by P(s,r)= Σe∈Σ P(s,e,r) where P(s,e,r) is
the probability of going from state s to state r
through transition e.

2.3.DTMC

A discrete time Markov chain (DTMC) is a tuple
(S, ∑, ∆, P, s0) where:
• ∑, S, ∆, P and s0 are defined as in Section 2.1
So a DTMC is an RTFSM, but in a DTMC, the delay
time spent at any state is the same and is equal to the
time unit, i.e., at each unit of time, a transition takes
place. For details see [2]

2.4.Traces

An execution sequence E of a CTMC M is an
alternating finite sequence of states and events with
their corresponding rates, of the form:

(e1,r1) (e2,r2)

E = s0 → s1 → ….. sn where ri = µ(ei, si, si+1).
We use the following terminology:
- The trace of E written tr(E), is the sequence of
actions: e0,e1,…appearing in E.
- Probability of E, or P(E), is the probability of getting
the execution sequence E which is the product of the
probabilities of all the transitions in E: P(E) =
r1/µ(s0)… rn/µ(sn-1).
- The average delay time of E, or ADT(E), is the
average total time spent before we enter the final state
sn, of E, which is the summation of the ADT spent in
each state: ADT(E) = 1/µ(s0)+…. +1/µ(sn-1)

2.5.Composition

Let M1 and M2 be two CTMC, where:
M1= (S1, ∑1, ∆1, µ1, s0

1) and M2= (S2, ∑2,∆2, µ2, s0
2),

we will adopt the definition of a composition from [2]:
The composition M1×M2 is a CTMC M defined as
follows:
M= (S1×S2, ∑1∪∑2, ∆ , µ, (s0

1, s0
2)) where:

• ∆ is the set of all ((s1,s2), e, (s’1,s’2)) such that if e ∈
Σ1 then (s1, e, s’1)∈ ∆1 otherwise s1=s’1, and if e ∈ Σ2

then (s2, e, s’2)∈ ∆2 otherwise s2=s’2

• µ((s1,s’1), e, (s2 ,s’2))= µ1(s1, e, s) if e∈Σ1/Σ2

= µ2 (s2, e, s’2) if e∈Σ2 /Σ1

= [µ1(s1, e, s’1). µ2(s2, e, s’2)/(µ1(s1).
µ2(s2))] (min(µ1(s1). µ2(s2)) if e∈∑1∩∑2

We note that the rate of the shared activity (third case
above) is reflecting the rate of the slower participant.
The resulting system is a CTMC, for a proof or a more
thorough discussion refer to [2].

2.6.Hiding

Let M be a CTMC with alphabet Σ, and let L⊆Σ,
we define M/L to be a CTMC that behaves exactly like

M except that all the symbols that belong to L are
hidden, i.e. we replace the occurrence of symbols from
L by the invisible symbol i, and hence we can interpret
the activity as an internal delay.
If M=(S, ∑, ∆, µ, s0), then M/L=(S, ∑∪{i}/L, ∆’, µ’,
s0) where
• (s,e,s’)∈∆’ if (s,e,s’)∈∆
• (s,i,s’)∈∆’ if there exists e ∈ L with (s,e,s’)∈ ∆
• µ’(s,e,s’)= µ (s,e,s’) and µ’(s,i,s’)= Σe∈L µ (s,e,s’)

2.7.Probability and Steady State Probability
Distributions

Let M= (S, ∑, ∆, µ, s0) be a CTMC. We denote by
- vs(t) the probability of being in state s at time t, for

some s∈S.
- v(t) the probability distribution vector of M at time

t.
- Π, the stationary distribution of M (if it exists),

which is: Π= limt→∞ v(t)
Remark: With some minor changes (like taking 1/T
instead of µ), the definitions above apply for an
RTFSM.

3. Approach to Solving the Problem

In this section, we first present an example and then
explain our approach to finding the performance
parameters of several system components in order to
satisfy the behavior specified for the overall system.

3.1.Motivating Example

User requests arrive a a certain rate and a server
processes them. The server either fails or succeeds in
processing. If it fails the whole system stops. If a new
request arrives while the server is busy processing a
previous request, the server apologizes and ignores the
new request. If another request arrives while the server
apologizes to the previous one, the server does not see
the new request. The time required for a new request to
arrive is a random variable with exponential
distribution and with rate = ¼, see Figure 1.

We assume that the system S is designed as a
composition of two components M and N, see Figure 2,
(refer to [1] for details about constructing submodules
from a given specification in the context of finite state
machines). Both systems M and N fail at the same time
because they rely on a third system that may fail
(example: power supply). The rates of machine M are
known, while those of machine N are not. We need to
determine the rates of machine N so that the

composition of M and N behaves “better” than S.
Before discussing what we mean by “better”, we
present a brief explanation about the behavior of M and
N and their composition, followed by a statement of
the problem to be solved.

(r,1/4) 1 (r,1/4)

0 (s,1) (a,1) 2
(f,1/4)

3

Figure 1. CTMC S, where r represents the
request seen by the server, f failure, s success

and a the ``apologies I’m busy`` message

(z,1)
1 5 5
(r,1/4) (f,rf)

(r,1/4) (x,1) (y,ry)
6 (a,1) 4 1 2

(f,1/6) (x,rx)
(z,rz)

2 (y,1) 3 3 4
(s,rs)

Figure 2. Submodules M and N

(r,1/4) (y, min(1, ry)) (r,1/4)
1,1 2,1 4,2 6,2

(a,1)
(z,r”’) (x,r”) (f,r’)

(s, rs)
5,3 5,4 3,5

Figure 3. The composition K=MxN

(r,1/4) (i, min(1, ry)) (r,1/4)
1,1 2,1 4,2 6,2

(a,1)
(i,r”’) (i,r”) (f,r’)

(s, rs)
5,3 5,4 3,5

Figure 4. Composition L=MxN/x,y,z with x,y,z
hidden

Components M and N run in parallel and
synchronize via some events: M gets the requests and
N processes them and sends a success message if it
succeeds in processing. At any time during the

processing, both machines may fail. While processing a
request, machine M may receive another request,
which is rejected by N by sending an “apologies, I’m
busy” message. N and M synchronize on actions x, y, z
and f (where x, z and y are some internal actions
common to both machines) to ensure that:
1. Every request that is processing either succeeds or

both machines fail.
2. N starts processing a request only when no other

request is being processed by machine N.
In Figure 3, r’=min(17/12, ,rf +rs).rf/(rf + rs).2/17

And r”= min(17/12, rf +rs).rx/(rf + rs).12/17
And r”’=min(1, rz)
x, z and y are internal actions, they are considered as
internal delays so we replace them by empty moves as
shown in Figure 4.

3.2.Designing Performance Parameters for
Composed Systems

CTMC L is a system constructed with the intention
to do the same work specified in specification S. Since
we cannot always achieve a system with identical
behavior, we are looking for a system with equal or
better behavior than the specification (we will define
later what we mean by better). Therefore the problem
here consists of determining the rates of subsystem M
and N in a way to satisfy the above statement. To be
able to solve this problem we need to:
1- Remove the internal delays from CTMC L: we
should obtain a CTMC F that has a “similar” structure
to L, but no internal delays. We resort to this
construction because comparing F and S is more
convenient than comparing L and S (due to the absence
of internal delays). In the next section we will present
an overview of the algorithm used to remove the
internal delays, also called i-moves; a detailed
explanation of the algorithm can be found in [3].
2- Define equivalences: after removing the i-moves
from CTMC L, see Figure 7, we get a CTMC F that is
equivalent to L according to two equivalences which
we call average delay simulation equivalence, and
average delay equivalence. For some systems, we are
interested in their behavior after they reach the steady
state (example: systems that run indefinitely), so we
require a certain equivalence between F and L that
preserves some useful steady state properties; here the
average simulation equivalence is useful. In other
systems, we are interested in their behavior starting
from the initial state and describing the probabilities
and delay times for doing certain actions. In this
context, the average delay equivalence is useful.
3- Define some criteria for comparison: For every
system, some criteria are considered to be better than

others, for example, one of our main concerns in a
given system might be the speed, so the faster the
model the better, or the criteria might be lower failure
rate, so the less the model fails the better. Sometimes,
if the system has limited storage capacity, we might be
interested in having the least data lost per unit of time
on average, so the less data lost in the model the
better…etc. These requirements are problem-dependant
and we will call them “criteria for comparison”. In the
particular problem above we consider the following
criteria: A better system is a system with less
probability of failure, moreover, we require faster
processing for requests on average (i.e. less average
delay time for a given request before a success occurs).

3.3.Removing i-Moves

Definition 1. A CTMC M has a n-cycle of i-moves if
there exists a state x in M, where we can navigate from
x and come back to x with a trace consisting of exactly
n i-moves.
Definition 2. Suppose M is a CTMC, we denote by Pt

x

the probability of a transition t from state x (see Figure
5).

We proceed with removing the i-moves as follows:
For each i-move in M from state x to state y, (we will
take Figure 5 as our case), which is not part of an n-
cycle, do the following
• Add to state x (Figure 5) all transitions that can be

done from state y, in our case they are: b1,…,bm,
these new transitions have x as a starting state but
go to the same state they used to go to from y.

i
x y

a1 …… an b1 …… bn

Figure 5. A general case of i-move

x b1 y
|
bn

a1 …… an b1 …… bn

Figure 6. States x and y after removing the
i-move

• The probabilities of the new transitions from x are:

Pbj
x = Pi

x Pbj
y. In other words, it is the probability

of going through the i-transition from state x to
state y, then going through the bj transition.

• The new ADT of x denoted by Dx’ becomes:
Dx’= Pi

x(1/rx+1/ry)+(1- Pi
x)1/rx = Pi

x/ry+1/rx = Dy+
Pi

xDx, where Dx is the initial ADT of state x
In other words, the new ADT of x, would be the
average of the ADT of x multiplied by the
probability of leaving through one of the ai’s added
to the ADT spent in x then in y consecutively
multiplied by the probability of doing transition i.
(before doing one of the bi’s).

On the other hand, if we have several
interconnected loops of i-moves (like the case in Figure
6a), then for each state x, we look at all the possible
loops connected to x, and we calculate the probability
for each non i-transition possible from x, as well as the
ADT of x, by taking into consideration that while in x,
we can traverse any of these loops many times before
doing a non i-transition. For a detailed construction,
see [3].

Figure 6a. All moves represented are i-moves.

4. Equivalences and Steady State Behavior

4.1.Equivalences

Definition 3. Two CTMC M1= (S1, ∑, ∆1, µ1, s0
1) and

M2= (S2, ∑, ∆2, µ2, s0
2) are said to be equal if we can

find a labeling f which maps the states of M2 to the
states of M1 such that:
∆1=f(∆2), s0

1 =f(s0
2), S1 =f(S2) and µ1=f(µ2) (where f(x)

represents x with the occurrence of any state s∈ S2

replaced by f(s))
Definition 4. Let M1 and M2 be two CTMC where:
M1= (S1, ∑, ∆1, µ1, s0

1) and M2= (S2, ∑, ∆2, µ2, s0
2), and

let M1’= (S1, ∑, ∆1’, µ1’, s0
1) and M2’= (S2, ∑, ∆2’, µ2’,

s0
2) be the CTMCs we obtain by removing the i-moves

from M1 and M2 , respectively. We say that M1 and M2

are average delay simulation equivalent, written
M1 ≅ M2 ,

if M1’ and M2’ are equal.

Definition 5. Let M1 and M2 be two CTMC where:
M1= (S1, ∑, ∆1, µ1, s0

1) and M2= (S2, ∑, ∆2, µ2, s0
2),

Then M1 and M2 are said to be average delay
equivalent, if:
• When E is a trace that is possible through M1 then

it is possible through M2 and vice versa.
• Let e∈Σ, then after performing trace E in M1 and

M2, the probability of having e as the next visible
(non i-transition) is the same in both M1 and M2

• After performing E, the delay time needed on
average before a visible transition occurs is the
same for both M1 and M2.

Proposition 1. If M1 ≅ M2 then M1 is average delay
equivalent to M2. (See [3] for a proof)

4.2.Steady State Behavior of Equivalent
CTMC’s

As we have seen in the example in Section 3, the
actual system we built is system L, while the system
we are using for comparison with S is system F. So
what can we say about the similarities of these two
systems?
Theorem 1. Let M=(S, ∑∪{i}, ∆, µ, s0) be a CTMC
with i-moves and N=(S, ∑, ∆, µ, s0) be the CTMC
obtained from M by removing the i-moves according to
the algorithm described in Section 3. Then the rate of a
transition e, for any e∈Σ, in steady state, is the same
for M and N.
For a proof, see Appendix A
Corollary 1. If M ≅ N then the rate of doing a
transition e, for any e∈Σ, in steady state, is the same
for M and N.

5. Examples:

5.1.Example 1
We will first proceed with the solution for the

problem proposed in Section 3: To start with, we need
to remove the i-moves from CTMC L. Figure 7
represents the graph obtained from L by removing the
i-moves following the algorithm defined in Section 3:

In Figure 7, we have indicated probabilities instead
of rates where α=r’+1/4+r”. And the ADT for each
state is given below:
ADT(1,1) =1/4
ADT(2,1)=1/min(1,ry)+
1/(r’+1/4+r”)+(r”/(1/4+r’+r”)).1/ rs

ADT(4,2)= (rs+r”)/[(r’+1/4+r”)rs]
ADT(5,5)= r”’+1/4

ADT(6,2)=1

(r,1) (r, 1/(4α)) (r,1/(4α))
1,1 2,1 6,2 4,2

(a,1)
(f,r’/α)

(f,r’/α)
(r,1) (s,r”/ α) (s,r”/ α)

3,5

5,3

Figure 7. CTMC F obtained by removing the
i-moves

Remark for this example, we cannot simplify F
anymore, the aggregation as defined in [2] is not
possible for F. While in Example1 we got the same
number of states as in the given specification, here the
number of states are larger, and cannot be simplified.

We now analyze the problem: The criteria of
comparison in this problem is concerned with
transition probabilities of the systems to be compared
as well as ADT. Since the “average delay
equivalence” conserves these criteria then we are safe
in comparing F and S instead of L and S.

The first part of the analysis is concerned with
comparing the probability of failure, while the second
part deals with the average time for request
processing.

1- The probability of failure, Pf, for a given
request r
In F and S, if a given request r starts processing,
no matter how many new requests arrive, the
machine has to go into either fail or success
options. Therefore the probability of failure Pf for
a given request r, can be measured as:
(probability of failure of r given we are in the

processing state) /(probability of success of r given
we are in the processing state)
so (Pf in S)= (¼ / 1)= ¼
(Pf in F)= (r’/α)/(r”/α) = r’/ r” = [min(17/12,rf

+rx).[rf/(rf + rx)].2/17] / [min(17/12,rf +rx).[rx/(rf +
rx)].12/17] = 2rf /12 rx.
We need (Pf in F) < (Pf in S), which leads to
2rf /12 rx < ¼,
rf < 3/2 rx

2- The ADT needed for a request r to succeed
- In S: Let r be a request that the machine is

processing. During the processing, new requests
might arrive; each with rate ¼, at any time the
processing might succeed with a probability of ½
(see Figure 1). So, a success might happen at first
with probability 1 and ADT= 3/2 (average delay

time at state 1), or it might happen after 1 new
request arrive and is refused by a sorry message
with probability ¼ and ADT =5/2+3/2 (average
delay time in state 1 then state 2 then state 1 again)
and so on… So, the total ADT before a success is:
(d in S)=1.3/2+1(3/2+5/2)+…. + 1.(3/2+n.5/2)+….

- In F: By similar reasoning, the ADT before a
success occurs is: (d in F)= (r”/α) [1/min(1, ry)
+1/α+r”/ αrs] +……..+ (r”/α)(1/4α) [1/min(1, ry)
+1/α+r”/ (αrs)+(1+(rs+r”)/αrs]+….+ (r”/α)(1/4α)n

[1/min(1, ry) +1/α+r”/ (αrs)+n(1+(rs+r”)/αrs]
- We need (d inF)<(d in S), this is achieved if the

general term in the sequence (d in F)< the general
term in (d in S), i.e. if
(r”/α)(1/4α)n [1/min(1, ry) +1/α+r”/
(αrs)+n(1+(rs+r”)/αrs]<3/2+n.5/2

for all n
One solution is obtained by taking: rf = rx =1 and
ry =1/20 rs =3.

5.2.Example 2

We assume that a queue can hold a maximum of
two elements, elements arrive and are stored in the
queue and remain there until they are removed, any
element that needs to be stored after the queue is full is
lost. The time before an elements is removed is a
random variable with exponential distribution and rate
= 2. The time before an element arrives is also a
random variable with exponential distribution and rate
=1, this is shown in Figure 8, where put represents the
arrival of an element, get the removal of an element
and s a ‘sorry full’ message, the state number
represents the number of elements in the queue.

(put,1) (put,1)

0 (get,2) 1 (get,2) 2

(s,1) (put,1)

overflow
Figure 8. CTMC S.

• Criteria for comparison: A better system is a
system with fewer elements lost per unit of time
on average.

In system S, to get the average number of elements
lost per time unit, we need to calculate the rate of
getting a put request, for that we need to calculate the
steady state probability.

(put,1) (y,1)
0 (x,1) 1 2 0 2

(x,rx) (y,ry)
(s,1) (put,1) (get,2) (s,rs)

3 1

Figure 9. CTMC M and N

We assume that the system is designed as a
composition of two components M and N, (see Figure
9), that synchronize on cetain events:
M fills up the queue when elements arrive.
N empties the queue when elements are removed.
N and M synchronize on actions x,y, and s to ensure
that:
• No more than two elements are present in the

queue at a given time
• The removal of an element is done only if the

queue is nonempty
• Both send a “sorry full” message when an

element arrives and the queue is full.

(put,1) (get,2) (i,ry/(2+ry))
0,0 1,0 1,1 2,2

(i,min(2, rx)/2)
(get,2) (s,min(1, rs)) (put,1)

0,1 2,3

Figure 10. CTMC K.

(put,1) (put,1/3)

0,0 1,0 1,1
(get,2/3) (get,(4+2 ry)/(4+3 ry))

(s,1) (put,
ry/(4+3ry))

2,3

Figure 11. CTMC F.

CTMC F is obtained by removing i-moves and then
discarding the nonconnected components. The numbers
next to the transition labels is the probability of the
transition, and the ADTs are as follows:
ADT(0,0)= 1
ADT(1,0)= 1/3+(2/(min2,rx))
ADT(1,1)= 2(3ry

2+7ry+4)/(4+3ry)
2

ADT(2,3)= min(1,rs)
In the remaining of this section, we need to

compare the performance of CTMC S and CTMC L

Now, we need to find the unknown rates in N so that,
M composed with N performs better than S. We
proceed as follows:
• compose M and N, then hide events x and y (as

discussed in Section 2) and obtain CTMC L,
shown in Figure 10.

• then we remove the i-moves from L to get the
CTMC F, shown in Figure 11. From Theorem 1,
we have L≅F.

• Then we find the unknown rates so that F performs
better than S in terms of average number of
elements lost per unit of time.according to the
criteria defined above, that is according to the
average number of elements lost per unit of time,
CS and CL, respectively.

The steady state probability of S, denoted by ΠS,
gives for every state s in S, the probability of being in
state s in equilibrium. So to calculate CS, we need to
calculate the steady state probability, in particular the
probability of being in state 2 in equilibrium multiplied
by the rate of getting an element:

The steady state probability of system S is
πs=[1/2,1/4,1/8,1/8]. The elements lost per unit of time
are:
CS =π(2).(rate of going out of state 2 through f)=
1/8.1=1/8

We know that L and F have same number of
elements lost per unit of time (from Theorem 1) hence
CF = CL . We calculate CF as follows:
Denote by x= (4+2ry)(4+3ry)/6(3ry

2+7ry+4) and y=
(4+3ry)ry/6(3ry

2+7ry+4)
The steady state probability of F is
πF=[6x/(2x-y+1), 3x/(2x-y+1), 6x/[3x(2x-y+1)], (1-x-
y)3x/[x(2x-y+1)]
and hence the average number of elements lost per unit
of time:
CF = π(2). (rate of going out of state 2 through
f)=2/[(2x-y+1)]. ry/(4+3ry) this should be smaller
than CS

By replacing x and y by their values, we get:
2/{(2[(4+2ry)(4+3ry)/6(3ry

2+7ry+4)]-[
(4+3ry)ry/6(3ry

2+7ry+4)]+1)}. ry/(4+3ry)<1/8
One solution could be achieved by taking: ry = ½, rx ≥
2, rs ≥ 1. In this case we get:
CF = 49.5/559.625= 0.088452<1/8= CS

So, on average, the machine L obtained performs
better than the original specification S.

6. Conclusion

The main concern in this paper was to decompose a
continuous time Markov chain into smaller and easier
to model chains. The same work could be applied to an

RTFSM and to discrete time Markov chains. As future
work, we are trying to generalize these ideas to any real
time probabilistic system regardless of the distribution
of time delays in its states.

7. References

[1] G. Bochmann, “Submodule Construction-the inverse of
composition”, Technical Report, University of Ottawa, 2001.

[2] Bremaud P., Markov Chains Gibbs Fields, Monte Carlo
Simulation, and queues, Springer Verlag, 1999.

[4] J. Drissi, G v. Bochmann, “Submodule Construction for
systems of I/O Automata”, Submitted to publication,
www.site.uottawa.ca/~bochmann .

[3] F. Dankar, G.V. Bochmann, “Removing Internal Delays
from a Continuous Time markov Process”, to appear in
Proceedings of the 4th International Symposium for
Mathematical Modelling.

[5] E Haghverdi, H Ural, “An Algorithm for Submodule
Construction”, Technical Report of the Department of
Computer Science, University of Ottawa, 1996.

[6] J. Hillston, “Compositional Markovian Modelling Using a
Process Algebra”, Proc. Of the 2nd International Workshop
on Numerical Solutions of Markov Chains. Kluer Academic
Publishers, 1995.

[7] P. Merlin, G. v. Bochmannn, “On the Construction of
Submodule Specifications and Communications Protocols”,
ACM Trans. On programming Languages and Systems, Vol.
5, No 1. 1983

[8] A. Petrenko, N Yevtushenko, G. v. Bochmann,
“Experiments on Nondeterministic Systems for the Reduction
Relation”, IWTCS’96.

[9] H. Qin, P. Lewis, “Factorization of Finite State Machines
under Strong and Observational Equivalences”, Journal of
Formal Aspects of Computing, Vol. 3, 1991.

[10] S. Wu, S. Smolka, E. Stark, “Composition and behavior
of Probabilistic I/O Automata”, Theoretical Computer
Science, Vol. 176, No. 1-2, 1997.

Appendix A

Proof for Proposition 1

Proof: We proceed in the proof as we remove each i-
move.
Case1: Non cyclic i-moves: We assume that M has an
i-move between states x and y, for some x,y in S, that

is not part of a n-cycle, refer to Figure 5, and M’ is the
CTMC obtained from M by removing this i-move.
Our aim is to prove that, in M and M’, the rate of doing
a certain transition e in steady state denoted by Pt

e and
P’t

e respectively, is the same. For that we need to
calculate the steady state probability for M and M’,
then use it to find the values: Pt

e and P’t
e.

First we find the steady state probability:
- let Π be the steady state probability of M, then we
know that the probability of going out of a state s in the
next time instance at equilibrium equals the probability
of coming into s in the next time instance, refer to [2]
for more details. Applying this to state x we get:
Π(x)µ(x)=Σ z≠x Π(z) µ(z,x)
⇒ Π(x)/D(x)=Σ z≠x Π(z) P(z,x)/D(z) where D(s) is the
ADT of sate s
similarly,
Π(y)/D(y) =Σ z≠y Π(z) P(z,y)/D(z)
- Now, let M’ be the CTMC obtained from M by
removing the i-move from x to y, refer to Figure 6. If
Π’ is the steady state probability for M’ and D’ is its
average delay time function, then:
Π’(x)µ’(x)=Σ z≠x Π’(z) µ’(z,x)
but the transitions coming into x have the same rate in
both M and M’
⇒ Π’(x)/D’(x) =Σ z≠x Π(z) P(z,x)/D(z)
⇒ Π’(x)/[D(x) +Pi D(y)]=Σ z≠x Π(z) P(z,x)/D(z)=
 Π(x)/D(x)
⇒ Π’(x)= Π(x) + Π(x) Pi D(y)/D(x)
Now, Π’(y)µ’(y)=Σ z≠y Π’(z) µ’(z,y) but µ’(y)=)µ(y)
⇒ Π’(y)/D(y) =[Σ z≠y,x Π(z) P(z,y)/D(z)]
+[Π’(x)/D’(x)]P’(x,y)
But P’(x,y) = P(x,y)-Pi,
⇒ Π’(y)/D(y) =[Σ z≠y,x Π(z) P(z,y)/D(z)]
+[Π’(x)/D’(x)][P(x,y)- Pi]
But Π’(x)/D’(x)= Π(x)/D(x)
⇒ Π’(y)/D(y) =[Σ z≠y,x Π(z) P(z,y)/D(z)]
+[Π(x)/D(x)][P(x,y)- Pi]
⇒ Π’(y)/D(y) =[Σ z≠y Π(z) P(z,y)/D(z)] - Pi Π(x)/D(x)
⇒ Π’(y)= Π(y) - Pi Π(x)D(y)/D(x)
Now, we calculate the rate of doing any transition from
x and from y in the next time instant in both M and M’
- Probability of doing transition ai in the next time
instance in M (refer to Figure 5) = Π(x)P(ai)/D(x)
- Probability of doing transition ai in the next time
instance in M’(refer to Figure 6) = Π’(x)P(ai)/D’(x)
= P(ai) [Π(x)+ Π(x) Pi D(y)/D(x)]/ [D(x)+ Pi /D(y)]
= P(ai) [Π(x)/D(x)] [D(x)+ Pi D(y)]/ [D(x)+ Pi D(y)]
= P(ai) [Π(x)/D(x)]
- Probability of doing transition bi in the next time
instance in M (refer to Figure 5)
= Π(y)P(bi)/D(y)

Probability of doing transition bi in the next time
instance in M’ (refer to Figure 6)
= Π’(y)P(bi)/D’(y)+ Π’(x)P(bi)Pi/D’(x)
= Π’(y)P(bi)/D(y) + Π’(x)P(bi)Pi/D’(x) (1)
but, from the calculations above we get that :
Π’(x)/D’(x) = Π(x) /D(x) and Π’(y)/D’(y)=
Π(y)/D(y)-Pi Π (x)D(y)/D(x)
so (1) ⇒ Π(y)P(bi)/D(y) -[Π(x) /D(x)] P(bi)Pi +[Π(x)
/D(x)] P(bi)Pi

= Π(y)P(bi)/D(y)
So after we remove the i-move between x and y, the
rate of a transition e from x or y remains the same. But,
the steady state probability for any state s where s≠x,y
is the same in M and M’ as well as the rate of doing
transition e out of s. Hence the rate for transition e in
M and M’ remains the same. Moreover, removing all
non cyclic i-moves from a CTMC keeps the rate of a
transition fixed.
Case2:
Cyclic i-moves: Now we need to consider the case of a
n-cycle of i-moves, and several interconnected loops of
i-moves and compare the rate of doing a transition e,
for some e∈Σ, at steady state, before and after
removing the i-moves.
For the sake of simplicity, we will treat the case of a 2-
cycle of i-moves only, the other cases are treated using
the same reasoning.
Let M be a CTMC with a 2-cycle of i-moves, see
Figure 12. Figure 13 shows CTMC M after removing
its 2-cycle of i-move.

i,P1

x y
i,P2

a1 -------- an b1 --------- bm

Figure 10:CTMC M

x y

a1 ------------ an b1 --------- bm

Figure 11. CTMC M’

We need to calculate the rate of transition a1 from x or
y in both M and M’.
- Let Π be the steady state probability of M, then
 Π(x)µ(x)=Σ z≠x Π(z) µ(z,x)

⇒ Π(x)/D(x)=Σ z≠x Π(z) P(z,x)/D(z) where D(s) is the
ADT of sate s
⇒ Π(x)/D(x)= Π(y) P(y,x)/D(y) +Σ z≠x,y Π(z)
P(z,x)/D(z)
similarly,
Π(y)/D(y) = Π(x) P(x,y)/D(x) +Σ z≠y,x Π(z) P(z,y)/D(z)
- If Π’ is the steady state probability for M’ and D’ is
its average delay time function, then:
 Π’(x)µ’(x)=Σ z≠x Π’(z) µ’(z,x)
Since there is no more transitions from y to x
 Π’(x)µ’(x)=Σ z≠x,y Π’(z) µ’(z,x)
but the transitions coming into x have the same rate in
both M and M’
⇒ Π’(x)/D’(x) =Σ z≠x,y Π(z) P(z,x)/D(z)
similarly
⇒ Π’(y)/D’(y) =Σ z≠x,y Π(z) P(z,y)/D(z)
Now, we need to calculate the rate of transition ai from
x and from y in both M and M’
- Rate of doing transition ai in M (Figure 10):
Pt= Π(x)P(ai)/D(x)
- Rate of doing transition ai in M’(Figure 11):
P’t= [P(ai)/(1-
P(y,x)P(x,y)]Π’(x)/D’(x)+[P(ai)P(y,x)/(1-
P(y,x)P(x,y)Π’(y)/D’(y)
= [P(ai)/(1-P(y,x)P(x,y)]Σ z≠x,y Π(z)
P(z,x)/D(z)+[P(ai)P(y,x)/(1-P(y,x)P(x,y)] Σz≠x,yΠ(z)
P(z,y)/D(z)
= [P(ai)/(1-P(y,x)P(x,y)] [Π(x)/D(x)-
P(y,x)Π(y)/D(y)]+[P(ai)P(y,x)/(1-
P(y,x)P(x,y)][Π(y)/D(y)- P(x,y)Π(x)/D(x)
= P(ai)[Π(x)/D(x)] [1-P(y,x)P(x,y)]/[1-P(y,x)P(x,y]
= Pt

So after we removed the 2-cycle of i-move from the
CTMC, the rate of transition ai remains the same.
Hence, the proposition is proved.

